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This paper treats a surface-tension-driven liquid-metal flow in a cylinder with a steady 
externally applied non-uniform axisymmetric magnetic field. The top boundary 
consists of an annular free surface around a solid disk, modelling the Czochralski 
growth of silicon crystals. A radial temperature gradient produces a decrease of the 
surface tension from the disk edge to the vertical cylinder wall. The magnetic flux 
density is sufficiently large that inertial effects and convective heat transfer are 
negligible. First we present large-Hartmann-number asymptotic solutions for magnetic 
fields with either a non-zero or a zero axial component at the free surface. The 
asymptotic solutions indicate that a purely radial magnetic field at the free surface 
represents a singular limit of more general magnetic fields. Secondly we present 
numerical solutions for arbitrary values of the Hartmann number, and we treat the 
evolution of the thermocapillary convection as the axial magnetic field at the free 
surface is changed continuously from the full field strength to zero. 

1. Background 
In the Czochralski (CZ) process, a single crystal is grown from a liquid melt 

contained in a crucible which is surrounded by a heater, as sketched in figure 1. Here 
we consider the CZ growth of dislocation-free silicon crystals with silica (SiO,) 
crucibles. Approximately 80 % of the integrated circuits for computers and other 
electronic devices are produced on wafers sliced from CZ silicon crystals (Zulehner 
1983). Erosion of the crucible introduces oxygen into the melt. The oxygen either 
evaporates from the melt’s free surface as SiO or enters the crystal. A small amount of 
oxygen strengthens the crystal and prevents warpage of wafers during the thermal 
cycles needed to produce an integrated circuit (Hoshi et al. 1985). Under typical 
conditions, 98 % of the oxygen entering the melt must evaporate from the free surface 
in order to achieve the desired oxygen concentration in the crystal (Series & Hurle 
1991). 

The diffusion coefficient for oxygen in molten silicon is extremely small, namely 
D = 5 x lo-’ m2 s-l, according to Hirata & Hoshikawa (1992). Only melt passing very 
close to the crucible surface acquires oxygen, and only melt passing very close to the 
free surface loses oxygen by evaporation. The upward velocity u, near the vertical 
crucible wall is proportional to the strength of the buoyant convection, which is driven 
by the 30 to 60 K temperature difference between the crystal-melt interface at 1683 K 
and the hottest point on the vertical crucible wall (Sabhapathy & Salcudean 1991). The 
radially outward velocity v, near the crucible bottom depends primarily on the 
centrifugal pumping associated with the crucible rotation. In general, an increase in the 
crucible’s angular velocity produces an increase in v, near the crucible bottom and an 
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FIGURE 1. Model of Czochralski crystal growth with a non-uniform axisymmetric magnetic field. 
Dimensions and coordinates are normalized by the inside radius of the crucible, R,. The radial and 
axial components of the magnetic field, B, and B,, are normalized by the root-mean-squared magnetic 
flux density, with the mean taken over the volume of the melt. 

associated increase in the transport of oxygen from the crucible bottom to the bulk of 
the melt (Hirata & Hoshikawa 1989b). Some crucible rotation is needed to smooth out 
the effects of small deviations from axisymmetry in the heater. 

The radially inward velocity at the free surface is proportional to the strength of the 
thermocapillary convection, which is driven by the decrease of the surface tension from 
the cold crystal edge to the hot crucible. With a strong thermocapillary convection, the 
melt which has passed close to the crucible surface loses its oxygen by evaporation 
before it reaches the bulk of the melt or the crystal-melt interface, so that the crystal 
has the desired low oxygen concentration. The radially outward velocity near the 
crystal face is driven by the centrifugal pumping associated with the rotation of the 
crystal and ensures radially uniform distributions of oxygen and dopants such as 
phosphorus or boron in the crystal (Series & Hurle 1991). 

The electrical conductivities of molten silicon and mercury are nearly equal, so that 
the melt motion can be controlled by an externally applied magnetic field. The many 
numerical and experimental studies of CZ silicon growth with magnetic fields were 
recently reviewed by Series & Hurle (1 99 1) and by Langlois, Kim & Walker (1 993). The 
first benefit of a magnetic field is the elimination of turbulence and all large-scale 
periodicity in the melt motion (Hirata & Hoshikawa 1992). Temporal fluctuations in 
the heat transfer and oxygen or dopant transport from the melt to the growing crystal 
produce many microscopic structural defects and microscopic concentration variations 
in the crystal (Kuroda, Kozuka & Takano 1984). Recent advances in integrated-circuit 
manufacturing have dramatically increased the number of transistors per cm2 of wafer 
surface and have led to the need to eliminate microscopic defects and concentration 
variations in the CZ crystals from which the wafers are sliced. 

A melt velocity u in the presence of a magnetic field B produces an induced electric 
field, u x B. The induced electric field drives an electric current density j ,  which 
produces an electromagnetic (EM) body force, j x B, opposing the component of v 
which is perpendicular to B. Therefore, the EM forces opposing melt velocities which 
are perpendicular or parallel to the magnetic field are large or zero, respectively. Ail 
melt circulations involve both flows along and across the magnetic field. However, if 
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the predominant direction of the flow in a circulation is perpendicular or parallel to the 
local magnetic field, then the EM suppression of the circulation is large or small, 
respectively. 

Initial experiments and modelling efforts focused on uniform magnetic fields which 
were either vertical (axial) or horizontal (transverse). An axial magnetic field does not 
disturb the axisymmetry of the heat and mass transfer to the crystal, but it strongly 
suppresses the desirable thermocapillary convection and centrifugal pumping near the 
crystal face because these radial motions are predominantly perpendicular to the axial 
magnetic field. Crystals grown in axial magnetic fields frequently have (i) excessive 
oxygen concentrations due to the EM suppression of the thermocapillary convection 
needed to ensure that 98 YO of the oxygen evaporates, and (ii) extremely non-uniform 
radial distributions of oxygen due to the EM suppression of the crystal-face centrifugal 
pumping (Ravishankar, Braggins & Thomas 1990). There are other reasons for high 
oxygen concentrations with axial magnetic fields, e.g. the temperature of the crucible 
must be increased with an axial field, so that the rate of crucible ablation is increased. 
Hjellming & Walker (1986, 1987) showed that (i) the magnitude of the thermocapillary 
convection varies as K2,  (ii) the magnitude of the crystal-face centrifugal-pumping 
circulation varies as Bi3,  and (iii) the buoyant velocity near the vertical crucible wall 
varies as K3/', where B, is the magnetic flux density of the uniform axial magnetic field. 
Sabhapathy & Salcudean (199 1) presented numerical calculations which confirmed 
that the asymptotic solutions of Hjellming & Walker are valid for a typical CZ process 
with B, > 0.2 T. 

A transverse magnetic field has a component which is perpendicular to the vertical 
crucible wall, except along two vertical lines. Therefore, it strongly suppresses the 
buoyant convection along the vertical wall and reduces oxygen transport from the 
crucible to the bulk of the melt. Walker & Williams (1994, 1995) showed that (i) the 
radial thermocapillary velocity near the free surface varies as Bill2, and (ii) the radial 
centrifugal-pumping velocity near the crystal face varies as K1, for a uniform 
transverse magnetic field. With such weak EM suppression of thermocapillary 
convection and centrifugal pumping, crystals grown with a uniform transverse 
magnetic field have low and radially uniform oxygen concentrations (Ravishankar et 
al. 1990). Oxygen concentrations increase as the crucible rotation rate is increased, 
since centrifugal pumping near the crucible bottom provides the primary oxygen 
transport from the crucible surface to the bulk of the melt. Unfortunately the melt 
motion with a transverse magnetic field is far from axisymmetric (Walker & Williams 
1993, 1994), and the associated convective heat transfer produces a strongly non- 
axisymmetric heat flux to the crystal. A point on the rotating crystal face experiences 
a large fluctuation in heat flux which produces highly undesirable periodic variations 
in the crystal structure, called thermal striations (Ravishankar et al. 1990). Therefore 
both axial and transverse uniform magnetic fields produce unacceptable crystals. 

In order to gain the benefits of a magnetic field without the disadvantages of either 
a transverse or axial uniform field, several researchers have proposed a particular non- 
uniform axisymmetric magnetic field called a cusp field (Hirata & Hoshikawas 1 9 8 9 ~ ;  
Series, 1989; Hicks, Organ & Riley 1989). A cusp field is produced by two identical 
solenoids which generate vertical magnetic fields in opposite directions and which are 
placed around the CZ furnace symmetrically above and below the plane of the 
crystal-melt interface and free surface. The four objectives of the cusp field are to 
produce: (i) a purely radial magnetic field near the free surface so that there is minimal 
EM suppression of the thermocapillary convection needed for oxygen evaporation, (ii) 
a very small radial magnetic field near the crystal-melt interface so that there is 
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minimal EM suppression of the crystal-face centrifugal pumping needed for radial 
uniformity of oxygen and dopants in the crystal, (iii) a radial magnetic field at the 
vertical crucible wall so that there is strong EM suppression of the vertically upward 
buoyant convection along this wall, and (iv) an axial magnetic field at the crucible 
bottom so that there is strong EM suppression of the centrifugal pumping associated 
with the crucible rotation. While we refer to oxygen and dopants together, their radial 
uniformity in the crystal depends on different mechanisms. Most dopants are rejected 
at the crystallization interface, so that elevated concentrations develop inside a thin 
diffusion boundary layer, and the radial uniformity within this very thin layer is 
important. Oxygen is not rejected at crystallization, so that it does not have a diffusion 
layer, and its radial uniformity depends on mixing in the melt, i.e. on motion on a much 
larger physical scale. All experimental results to date for cusp fields are very positive 
(Series 1989; Hirata & Hoshikawa 1989a, b). The only disadvantage of a cusp field 
produced by two solenoids outside the CZ furnace is that the maximum magnetic flux 
density in the melt is very small compared to that elsewhere, so that most of the 
magnetic field is wasted. This problem could be greatly diminished by putting solenoids 
inside the furnace, close to the heaters and crystal, but there is currently disagreement 
about the possibility of putting solenoids inside the furnace (Series & Hurle 1991). 

Most modelling of melt motion in non-uniform axisymmetric magnetic fields to date 
has focused on the cusp field (Hicks et al. 1989; Sabhapathy & Salcudean 1991 ; Hirata 
& Hoshikawa 1992). Hjellming, Tolley & Walker (1993) treated centrifugal pumping 
with a strong non-uniform axisymmetric magnetic field with a non-zero axial magnetic 
field at the plane of the free surface and crystal face, so that their analysis applies for 
all cases except the cusp field. In crystals grown without a magnetic field or with a cusp 
field and with the free surface at the zero-axial-field plane throughout crystal growth, 
the oxygen transport to the crystal decreases during crystal growth, producing an 
undesirable longitudinal variation of the oxygen concentration in the crystal. Hirata & 
Hoshikawa (1989 b) showed experimentally that a uniform longitudinal distribution of 
oxygen could be achieved by moving the free surface away from the zero-axial-field 
plane when half of the crystal is grown. During the second half of the process, the non- 
zero axial field at the free surface suppresses thermocapillary convection and the 
associated oxygen evaporation, thus leaving more oxygen to enter the crystal. There 
were no adverse effects on the radial oxygen and dopant distributions in the crystal. 

This paper treats only the thermocapillary convection. Analyses are developed for all 
possible non-uniform axisymmetric magnetic fields, and results are presented for one 
family of such fields. The results show the evolution of the flow as the magnetic field 
is changed continuously from a uniform axial field to a cusp field. 

2. Problem formulation 
With any magnetic field, the magnitudes of the radial and axial velocities decrease 

as the characteristic magnetic flux density B, is increased, so that the characteristic 
velocity U varies as some inverse power of B,. The characteristic ratio of the EM body- 
force term to the inertial term in the Navier-Stokes equation is the interaction 
parameter, N = CB; R,/pU, where c and p are the electrical conductivity and density 
of the melt, while R, is the inside radius of the crucible which serves as the characteristic 
length. We assume that N is sufficiently large that all inertial terms are negligible, 
except the radial centrifugal force associated with the azimuthal velocity. We also 
assume that the PCclCt number, Pe = pcUR,/k,  is sufficiently small that convective 
heat transfer is negligible, where c and k are the specific heat and thermal conductivity 
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of the melt. With these two assumptions, the melt motions due to thermocapillarity, 
buoyancy and centrifugal pumping can be treated independently and then superposed 
in order to treat mass transport of oxygen and dopants. The mass PeclCt number, 
Pe, = URJD, is always very large because the diffusion coefficients D are so small. 

The assumption that convective heat transfer is negligible is probably only valid for 
the strongest magnetic fields being considered for commercial silicon crystal growth. 
For weak or moderate magnetic field strengths, the melt motions due to thermo- 
capillarity, buoyancy and centrifugal pumping are coupled, and numerical treatment 
of complete problems is needed (Hicks et al. 1989; Hirata & Hoshikawa 1992; 
Sabhapathy & Salcudean 1991). The present asymptotic treatment with decoupled 
flows and the numerical treatment of complete problems complement each other : the 
former provides physical insights which can guide process optimization, while the latter 
provides more accurate predictions for specific cases and defines the limitations of the 
asymptotic results. 

Here we only treat the thermocapillary convection with various steady non-uniform 
axisymmetric magnetic fields which have only radial and axial components, B, and B,. 
Since the magnetic Reynolds number, R, = ,updJR,,  is always very small, the 
components of B satisfy 

where ,up is the magnetic permeability. We choose the root-mean-squared value of the 
magnetic flux density for B,, where the mean is taken over the volume of the melt. 
Therefore the dimensionless field is scaled by the condition 

l l (B:+B:) rdzdr  = 0.%, 

where b is the instantaneous dimensionless melt depth, as indicated in figure 1. For the 
flow problem, B, and B, are known functions of r and z.  

The thermocapillary convection only involves radial and axial velocities, so that the 
dimensionless governing equations are 

j ,  = BTvZ-B,v,, - - (rv , )+-  l a  8% = 0, 
r ar a Z  

where p and j ,  are the pressure and azimuthal electric current density, normalized by 
aUBi R, and vUB0, respectively, while Ha = B, Rc(~/,u)1’2 is the Hartmann number 
and ,u is the melt’s viscosity. Here (3a, b) are the radial and axial components of the 
inertialess Navier-Stokes equation with the EM body force and (3 c) is the azimuthal 
component of Ohm’s law with the induced electric field and zero azimuthal static 
electric field because of axisymmetry. Since the electric current in the melt is azimuthal, 
the electrical conductivities of the crucible, crystal and atmosphere have no effect on 
the thermocapillary convection. 
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FIGURE 2 .  Dimensionless temperature at the free surface, T(r ,  b), for a = 0.59 and b = 1 .  

We use the bulk flow approximation which assumes that the crystal-melt interface 
and the free surface are planar and lie in the same horizontal plane. In reality, the free 
surface has a meniscus rising to the particular angle associated with constant-diameter 
crystal growth, while the crystal-melt interface may be slightly convex or concave. 

The boundary conditions at the crucible surfaces and crystal-melt interface are v,  = 
v, = 0, at z = 0 for 0 < r < 1, at r = 1 for 0 < z < b, and at z = b for 0 < r < a, where 
a is the dimensionless radius of the crystal. We assume that the surface tension y is a 
linearly decreasing function of the dimensional temperature T*, so that dy/dT* is a 
negative constant. For the thermocapillary convection we choose 

where (AT*), is the characteristic temperature difference in the melt. With this 
characteristic velocity, the boundary conditions at the free surface are 

(4a, b)  
aT 

-- av, --Ha---, v,=O at z = b  for a < r <  1, 
a2 ar 

where the dimensionless temperature T = (T* - 1683 K)/(AT*),. Here 1683 K is the 
melting temperature of silicon, so that T = 0 at the crystal-melt interface. For the 
thermal problem, we neglect convective heat transfer, we assume that there is no heat 
transfer through the crucible bottom, we assume that there is a uniform heat flux q 
from the vertical crucible wall to the melt, and we include radiation from the free 
surface (Hjellming & Walker 1987). We use 0.3 for the radiative emissivity of the free 
surface (Sabhapathy & Salcudean 1991). With (AT*), = qR,/k, aT/ar = 1 at r = 1. 
The dimensionless temperature at the free surface for a = 0.59 and b = 1 is presented 
in figure 2. 

The neglect of inertial effects and of convective heat transfer is only valid for 
relatively large values of Bq, for which Ha is also large, e.g. Ha is approximately 600 
for a typical CZ process with B, = 0.2 T. In $3, we present asymptotic solutions for 
Ha + 1 and for magnetic fields with non-zero values of B, at the free surface. In $4, we 
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present the corresponding asymptotic solution for the cusp field with B, = 0 at z = b. 
The two asymptotic solutions are very different with O(Ha-') and O( 1) dimensionless 
circulations for the cases in $ 3  and $4, respectively. Therefore the large-Hartmann- 
number asymptotic solutions indicate that the cusp field represents a singular limit, and 
that perfect alignment between the free surface and the local magnetic field is needed 
in order to gain the benefits of a cusp field. In $ 5 ,  we present numerical solutions for 
arbitrary values of Ha, and we show that the cusp field does not represent a singular 
limit for realistic values of Ha. For Ha = 100 or 400, the circulations with modest 
misalignments are only slightly less than those for perfect alignment. The asymptotic 
solutions provide physical insights into the numerical results. For the cusp field, the 
asymptotic solution is essentially realized for Ha 2 200. On the other hand, for a 
magnetic field with a small angle between the local field direction and the plane of the 
free surface, the asymptotic solution in $ 3  would not be realized until Ha became much 
larger than the values encountered in actual magnetic CZ crystal growth. Of course, the 
$ 3  solution is realized for modest values of Ha when the angle between the local field 
and the free surface is not small, e.g. an axial field. 

3. Large-Hartmann-number solutions for a non-zero axial magnetic field 
at the free surface 

The asymptotic analyses presented in this section parallel those presented by 
Hjellming et al. (1993) for centrifugal pumping with various non-uniform, axi- 
symmetric magnetic fields. 

3.1. Hartmann-layer solution for the Jirst magneticJield 
First we consider magnetic fields with B, > 0, Br > 0 and aB,/az < 0 throughout the 
melt, i.e. the magnetic field lines fringe radially outward and the axial field strength 
decreases as z increases from 0 to b. The flow subregions for Ha % 1 are shown in figure 
3. There are two interior layers, I1 and 12, which lie along the magnetic field lines 
through the ends of the free surface, i.e. through the crystal edge at r = a,  z = b, and 
through the free-surface-crucible contact at r = 1 ,  z = b. These interior layers have an 
O(Ha-l/') dimensionless thickness and separate the three inviscid cores, Cl,  C2 and C3. 
Since there is a non-zero normal component of B at each boundary, there is a 
Hartmann layer H with an O(Ha-l) thickness between each boundary and the adjacent 
core or interior layer. 

In cores Cl and C3, and in the adjacent Hartmann layers, u,, vz, andj, are zero, while 
p is constant, to all orders in Ha-'. Therefore the thermocapillary convection is 
confined to the core C2, the two interior layers, the free-surface Hartmann layer and 
the middle Hartmann layer on the crucible bottom. In the core C2, all variables are 
O(Ha-l), but in the free-surface Hartmann layers, u, and j ,  are O( l), while u, and p are 
O(Ha-l). For the free-surface Hartmann layer, the solution of ( 3 4  c) which satisfies 
(4a) and matches the core is 

2 - r  

where Z = Ha(z - b) is the stretched axial coordinate and O(Hu-l) terms are neglected. 



376 Y.  Y. Khine and J.  S.  Walker 

FIGURE 3. Flow subregions for Ha 9 1 and for a magnetic field with B, > 0, B, > 0, and 
aB,/az < 0 throughout the melt. 

The dimensionless total radial flow inside the free-surface Hartmann layer at each 
radius is 

neglecting O(Ha-') terms. From figure 2, the quantity r aTpr at z = b increases from 
1.0 to 1.63 as r decreases from 1.0 to 0.65. If B, is uniform over the free surface, the 
radially inward flow inside the free-surface Hartmann layer increases as r decreases 
from 1 to a, which implies an O(Ha-l) axial velocity from the core C 2  to this Hartmann 
layer. 

3.2. Core solution for the Jirst magnetic field 
For the core C2 and both interior layers, we use an orthogonal curvilinear coordinate 
system (Y, 8, @), where Y and @ are the stream and potential functions for the 
dimensionless axisymmetric magnetic field B satisfying (l), so that 

a@ l a y  a@ i a ~  B , = - = - - -  B=-=-- .  
ar r a z '  az r ar 

Hjellming et al. (1993) presented the metrics and other details of this system. With Y 
and @ as the independent variables, r( Y, @) and z(Y,  @) are the radial and axial 
coordinates and B( Y, @) = (B,2 + B;)l/' is the local dimensionless magnetic field 
strength. In a 8 = constant vertical plane, the unit vectors 

A = B-' (B, i - -B, . i ) ,  t"= B - ' ( B , i + B , f )  

are perpendicular and parallel to the magnetic field at each point, where i, 8, i are the 
unit vectors for the cylindrical coordinates. Therefore A. 6, t" are the right-handed, 
orthogonal unit vectors for the (Y,  8,@) coordinates, and the magnetic field at each 
point is B = B( Y, @) t". 
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In the core C2, u = H~-~(v, , f i+v,,  f), j ,  = Ha-'j,, and p = Ha-'p,, neglecting 
O ( H U - ~ )  terms. From (3 a, b), p ,  is independent of @, i.e. the pressure p,( Y) is constant 
along each magnetic field line. Then (3) gives 

The total volumetric flow across any axisymmetric Y = constant surface is zero. In the 
middle Hartmann layer on the crucible bottom, v, and v, are O(Ha-') and O(HaP), 
respectively, so that its contribution to the flow is O(Ha-'). Therefore the O(Ha-') 
outward core velocity v,, across the surface must cancel the radially inward flow (6) 
inside the free-surface Hartmann layer. On each Y = constant magnetic field line, 
Qb( Y) and Gf( Y) are the values of @ where this magnetic field intersects the bottom 
and free surface, respectively, i.e. z(Y,  Qb( Y)) = 0 and z( Y, @kY)) = b. In addition, 
A ( Y )  is the value of the quantity q 2 r a T / a r  at the point where this magnetic field 
intersects the free surface, i.e. 

Conservation of mass gives the pressure gradient at each magnetic field line, 

Along each magnetic field line, all the variables are proportional to the radial 
temperature gradient where this field line intersects the free surface. For the present 
magnetic field, r increases and B decreases as we move along a field line from the 
bottom to the free surface. Therefore (7b) indicates that v,, is small near the bottom 
and large near the free surface. Along each field line, (7c) can be integrated from @ = 
ab( !P) to any @, where matching the bottom Hartmann layer gives 

The O(Ha-') x O(Ha-ll2) intersection region at r = a, z = b accepts a radially inward 
flow from the free-surface Hartmann layer and delivers it to the interior layer I1 at 
z = b. This flow descends inside I1 and enters the core C2 with the distribution dictated 
by (7b), (8) evaluated at Y = Y(u, b). The flow entering C2 from the upper part of I1 
flows directly to the free-surface Hartmann layer. The flow entering C2 from the lower 
part of I1 spreads out as it crosses C2 until enters I2 with the distribution dictated by 
(7b), (8) evaluated at Y =  Y(1,b). This flow ascends inside I2 to enter the 
O(Ha-l) x O(Ha-l/') intersection region at r = 1, z = b, where it turns to enter the free- 
surface Hartmann layer at r = 1. The structure of the two interior layers is somewhat 
complicated by the variations of B and r with @ along these layers, but the structure 
is qualitatively similar to that treated in detail by Hjellming & Walker (1987) for the 
interior layer at r = a for a uniform axial magnetic field. The only additional 
characteristics of the interior layers which we will cite in $ 5  are that the flow enters I1 
or leaves I2 as a point source or sink at z = b and that the streamlines spread out 
roughly as parabolas as z decreases from b. 
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FIGURE 4. Flow 
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subregions for Ha % 1 and for a magnetic field with B, 
a B Z p  > 0 throughout the melt. 

> 0, B, < 0, and 

3.3. Second magnetic jield 
Next we consider a magnetic field with B, > 0, B, < 0, and aB,/az > 0 throughout the 
melt, i.e. the magnetic field lines fringe inward and the axial magnetic field strength 
increases as z increases from 0 to b. The flow subregions for Ha >> 1 are shown in figure 
4. The interior layer 12 now lies along the magnetic field line through the crucible 
corner at r = 1, z = 0. The core C1 and adjacent Hartmann layers are again stagnant 
to all orders, while the solutions in the free-surface Hartmann layer, core C2 and 
interior layer I1 are the same. Now the core C3 is not stagnant, and the O(Ha-') 
variables here are given by (7), (8) with Qb( Y )  replaced by QW( Y )  which is the value of 
Q where each Y = constant magnetic field line intersects the vertical crucible wall, i.e. 
r( Y, Qu( Y))  = 1. The interior layer I2 is quite different - there is no O(Ha-') flow inside 
it, the O(Ha-l) u,, is continuous across it, and the only role of this much weaker layer 
is to match a discontinuity between the values of utc in cores C2 and C3. Even this weak 
discontinuity is an artifact of our simplified model because actual crucibles have 
rounded junctions between the actually curved bottoms and the vertical walls. There 
is an O(Ha-l) x O(Ha-l) region at the free-surface-crucible contact at r = 1, z = b, 
which accepts an O(I3a-l) flow from C3 and delivers it to the free-surface Hartmann 
layer, so that C3 sees this region as a sink. 

3.4. Third magneticjield 
The third magnetic field considered in this section is that produced by a solenoid 
around the heater and an opposing solenoid very close to the crystal. The upper 
solenoid produces a downward magnetic field under the crystal and adjacent part of 
the free surface, as sketched in figure 5.  This field turns outward and upward in the 
melt. The field from the lower solenoid fringes outward to intersect the outer part of 
the free surface and the vertical crucible wall. The dividing magnetic field line, Y = 0, 
intersects the r = 0 axis where B = 0. The subregions of the flow for Ha $- 1 and three 
typical magnetic field lines are shown in figure 5. 
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FIGURE 5. Flow subregions for Ha B 1 and for the magnetic field produced by a solenoid around the 
heater and another opposing solenoid near the crystal. Here 1 indicates the point where the magnetic 
field is tangent to the free surface, while 2, 3 and 4 indicate the three different types of magnetic field 
lines in the melt. 

Here we refer to the solution for our first magnetic field whose subregions were 
presented in figure 3. For our third field, the core C3 and adjacent Hartmann layers are 
again stagnant to all orders. Except at the point 1 in figure 5 where B, = 0, the solution 
for the free-surface Hartmann layer is given by (5) ,  (6) with B, replaced by IB,I and with 
sgn (B,) added to ( 5  b). At the point 1, there is a region with Ar = O ( H U - ~ / ~ )  and Az = 
O ( H U - ~ ’ ~ )  which matches the singularity in the Hartmann-layer solution (5) ,  (6) as 
B, + O  (Roberts 1967). The structures of the interior layer I2 and intersection region at 
r = 1, z = b are the same. In the core C2, there are two types of magnetic field lines, 
denoted as 3 and 4 in figure 5.  Field line 4 intersects the crucible bottom and free 
surface, so that (7), (8) apply. Field line 3 intersects the crystal face and free surface, 
so that (7), (8) apply with Qb(Y) replaced by Qs(Y), which is the value of Q where each 
magnetic field line intersects the crystal face i.e. z( Y, Qs( Y) )  = b. We might expect a 
discontinuity across the Y = 0 magnetic field line because Y = 0- intersects the crystal 
face while Y = Of intersects the crucible bottom. However, the radii in (7), (8) indicate 
that all variables vanish along the axis where the abrupt field change occurs, so that 
there are no discontinuities in the interior of C2. 

The field line 2 in core C1 intersects the free surface twice. The velocity v,, across this 
field line is proportional to the difference between the radially inward flows Qh inside 
the free-surface Hartmann layer at the two ends of this field line, while the velocity vtc 
along this field line depends on the variation of Qh between adjacent field lines. From 
(6), Qh might well have nearly equal values at the ends of each magnetic field line in 
C1, but the magnitude of Qh decreases in both directions from a maximum near the 
point 1 to a minima adjacent to 11. Therefore the flow in C1 and the adjacent part of 
the free-surface Hartmann layer consists primarily of strong local inward flow inside 
the Hartmann layer with return flow along the magnetic field lines in C1. In reality, Ha 
is not sufficiently large for Ha-l13 to be very small, so that the region with Ar = 
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O(Ha-'/3) and Az = O(Ha-2/3) probably extends over most of the core C1, and viscous 
effects reduce the strong local circulation from that predicted by (6)-(8). Nevertheless, 
we expect strong circulation in the pocket above the field line through the crystal edge. 
The radially inward flow in the free-surface Hartmann layer adjacent to C2 continues 
across the free surface inside the Hartmann layer to r = a and then travels around I1 
from the crystal edge to enter C2 with distribution dictated by (7), (8) with cDb( Y )  
replaced by Qs( Y )  and evaluated at Y = Y (a, b). 

4. Large-Hartmann-number solution for a purely radial magnetic field at 
the free surface 

Here we treat the cusp field for which B, and B, are even and odd functions of ( z  - b), 
respectively. The thermocapillary convection is now confined to a top layer which has 
an O(Ha-'/') thickness and which lies adjacent to the free surface and crystal face at 
z = b. Everywhere else in the melt, u, = u, = j ,  = p  = 0 to all orders in Ha-'. As the 
magnetic field for figure 3 approaches the cusp field, the free-surface Hartmann layer, 
the core C2 and both interior layers merge into the top layer at z = b and the stagnant 
core C3 spreads over the rest of the melt. 

The top layer for the cusp field and the interior layers in Q 3 have the same O(Ha-'l2) 
thickness and the same force balance: (i) an O(1) velocity across the magnetic field 
produces an electromagnetic body force which is balanced by the gradient of the 
O(Ha-'/') pressure normal to the field, and (ii) the resultant pressure gradient parallel 
to the magnetic field is balanced by the viscous stresses and accelerates the flow to an 
O(Ha'/') velocity parallel to the field. The primary difference between the top layer here 
and the interior layers in 9 3 is that the top layer is a semi-infinite layer which is driven 
by the thermocapillary stress on its top boundary, while the interior layers are doubly 
infinite layers which emanate from singularities. For example, layer I1 in figure 3 is 
driven by a mass source at r = a, z = b;  as the flow descends from this source inside 
the layer, it spreads and is fed into the core C2. 

We introduce the stretched axial coordinate 5 = Ha'I2(z- b) and the stream function 
y?t(r, lJ for the O(1) circulation in the top layer. In this layer 

B, = Br(r, b) + O(Ha-'), B, = Ha-'/2{-(r, b) + O(Ha-3/2), 
az 

We derive the equation governing y?t by introducing these expressions into (30, b) and 
by cross-differentiating to eliminate the O(Ha-'/') pressure. The result is 
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for 0 < r < 1 and - 00 < 5 < 0. The boundary conditions at the crystal-melt interface 
and at the free surface are 

There is a Hartmann-layer-like region with Ar = O(I3u-l) and Az = O(HU-~/') between 
the top layer and the vertical crucible wall. This region matches any value of the O(1) 
top-layer u, as long as the O(Ha'/') top-layer u, = 0 at r = 1 .  Therefore 

$, = O  at r =  1. (1 1) 

Matching the stagnant core gives 

+,+O as 5-f-00. (12) 

In $ 5 ,  we will consider magnetic fields with 

B, = Cr, B, = 2C(ab-z), (134 b) 

which is the local field produced by a pair of identical opposing solenoids whose radius 
and distance from the symmetry plane at z = ab are both much larger than the melt 
dimension R,. Several authors (Hirata & Hoshikawa 1989a; Hicks et al. 1989; 
Sabhapathy & Salcudean 1991) have computed magnetic fields for specific solenoid 
pairs outside the CZ furnace and the field variations are quite close to (13) because the 
outside radius of the furnace is much larger than R,. With our normalization, (2)  gives 

C = [~+4b'(a2-a+~)]-'''. (14) 

The cusp field corresponds to a = 1, while the fields for figures 3 and 4 correspond to 
a > 1 and a < 0, respectively. Since we will compare the asymptotic solution in this 
section with the arbitrary-Hartmann-number solutions in $ 5 ,  we use (13), (14) with 
a = b = 1, so that 

Br(r, b) = Cr, - ( r ,  a 4  b) = -2C, C = (A)'". 
a2 

For our numerical solution, we truncate the domain at 5 = - d, and we replace the 
matching condition (1 2)  with the symmetry conditions 

We found that d = 6 is sufficiently large that all derivatives of $, are essentially zero 
at 5 = -d. We solved (9)-(1 l), (15), (16) with a Chebyshev spectral collocation 
method. Since there is a discontinuity at r = a between the boundary conditions 
(lob, d) at 6 = 0, we used a weighted Galerkin method to satisfy these conditions, 
which gives much better results than a collocation method. The series solution had 25 
terms each in the radial and axial directions. 

The streamlines are presented in figure 6 .  The radially inward flow close to the free 
13 F L M  216 
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FIGURE 6. Streamlines for a cusp magnetic field and for Ha 9 1. 
Here $t = 0.02 and 0.04k for k = 1 to 5. 

surface turns downward at the crystal edge. The circulation is completed by an upward 
and radially outward flow which tries to follow the magnetic field lines. In the top layer, 
the stream function for the magnetic field is Y = -Ha-1"Tr2[. Therefore the 
streamline = 0.02 closely follows the magnetic field line from r = 0.5, 6 = -4 
toward its intersection with the crucible at r = 1, 5 = - 1. 

for this field is 0.222, so that the large-Hartmann-number 
solution for this cusp field predicts that the dimensionless circulation approaches an 
O(1) value of 0.222 as Ha-+ 00. This result contrasts with the 93 result that the 
dimensionless circulation approaches zero as Ha-' when Ha+ 00, as long as there is 
any non-zero axial magnetic field at the free surface. 

The maximum value of 

5.  Arbitrary-Hartmann-number solutions 
We introduce the stream function $(r,z)  where 

Then (l), (3) give 
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FIGURE 7. Magnetic field lines for b = 1 ,  with the magnetic plane of symmetry at z = a and with the 
melt between z = 0 and z = 1. Field lines in the melt: (i) for a = 1 .O between the solid lines at z - a 
= 0 and - 1, (ii) for a = 1.1 between the dashed lines at z-a = -0.1 and - 1.1, (iii) for a = 1.4 
between the dot-dashed lines at z-a = -0.4 and - 1.4, and (iv) for a = -0.4 between the dot-dashed 
lines, inverted in z .  

Here Br(r, z )  and Bz(r, z )  are known variable coefficients. The boundary conditions are 

$ = O  - = 0  at z = O  andat z = b  for O < r < a ,  (18a,b) a$ 
’ az 

(18c, 4 $ = O  - = 0  a$ at r = l ,  
’ i3r 

We have solved (1 7), (18) numerically with essentially the same Chebyshev spectral 
collocation method used for the top layer in $4. Again we used a weighted Galerkin 
method for the discontinuous boundary conditions (18 b , f )  at z = b. For larger values 
of Ha, many more terms in the spectral series are needed in order to resolve the 
Hartmann layers. For Ha = 400, the series had 25 terms in the radial direction and 50 
terms in the axial direction. 

We present results for the magnetic field (13), (14) with various values of a, with 
b = 1, with a = 0.59, and with the T(r, b)  in figure 2. We consider five magnetic fields: 
(i) a uniform axial magnetic field with B, = 0 and B, = 1, corresponding to a+ co, (ii) 
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FIGURE 8. Streamlines for the cusp magnetic field and for Ha = 100. Here +t = 0.01, 0.03 and 
0.05 + 0.04k for k = 0 to 3 .  

a cusp field for a = 1, (iii) a slight misalignment between B and the free surface for 
a = 1.1, (iv) a modest misalignment for a = 1.4, and (v) a figure-4 field with the largest 
B, at the free surface for GI = -0.4. The magnetic field lines in the melt for the non- 
uniform-field cases are presented in figure 7. For a 3 b, the dimensionless magnetic- 
field strength increases from Bmin at r = 0, z = b to B,,, at r = 1, z = 0. For three of 
the cases in figure 7, Bmin is 0, 0.133 and 0.396, while B,,, is 1.65, 1.60 and 1.47 for 
a = 1.0, 1.1 and 1.4, respectively. 

For the cusp field with a = 1.0, the maximum values of @ are 0.0625, 0.157, 0.194, 
0.220 and 0.222 for Ha = 10, 50, 100, 200 and 400, respectively. Since the asymptotic 
value for Ha 9 1 is 0.222, we conclude that the asymptotic solution is realized for Ha 
3 200. The streamlines for Ha = 100 are presented in figure 8. After a vertical rescaling 
with = 10, the streamlines in figures 6 and 8 are very similar. The streamlines for 
Ha = 200 and 400 are virtually identical to those in figure 8 with the appropriate 
compression toward z = 1. 

For a = 1.1 with a slight misalignment between B and the free surface, the 
streamlines for Ha = 100 and 400 are very similar to those for a = 1. The maximum 
values of @ are 0.177 and 0.197 for Ha = 100 and 400, respectively. The asymptotic 
solution in $ 3  predicts that the circulation with any non-zero value of Bz(r, b) should 
vary as Ha-', but as Ha is increased from 100 to 400, the circulation for GI = 1.1 
increases by 11 % rather than decreasing by 75 %. In a plot of circulations versus Ha, 
that for CL = 1.0 asymptotes to 0.222 for Ha > 200, while that for a = 1.1 reaches a 
maximum at some value of Ha greater than 400, and then decreases, ultimately 
approaching zero as Ha-'. For Ha < 400, the only evidence of this difference between 
the circulations for a = 1.0 and 1.1 is that the circulations for GI = 1.1 are 9.0% and 
11.3% less than those for a = 1.0 for Ha = 100 and 400, respectively. While both 
circulations are increasing, the difference between them is also increasing. For a typical 
CZ process with B, < 0.5T, Ha < 1500. We conclude that the asymptotic solution in 
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FIGURE 9. Streamlines for Ha = 100. (a) a = 1.4; $ = 0.01 and 0.02k for k = 1 to 5.  (b)  Uniform axial 
magnetic field (a+ co): $ = 0.005k for k = 1 to 4 and $ = 0.03. (c) a = -0.4: $ = 0.003k for k = 
1 to 4 and $ = 0.018. 
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$3 is not realized in practice for slight misalignments between B and the free surface, 
and that the circulation is not radically less than that for perfect alignment. 

The streamlines for a = 1.4, for a uniform axial magnetic field (a+ GO), and for 
a = -0.4 are presented in figure 9 for Ha = 100. The magnetic fields for a = 1.4 and 
a = - 0.4 correspond to those for figures 3 and 4, respectively. The streamlines follow the 
magnetic field lines as the field changes from fringing outward in figure 3 to a uniform 
field and then to fringing inward in figure 4. The interior layers I1 and I2 in figure 3 
are evident in figure 9(a). For 11, all the flow enters at r = a,  z = b, spreads as it flows 
downward inside 11, and then enters the core C2. The four inner streamlines in figure 
9(a)  cross the core C2 and enter the Hartmann layer at the free surface. The two outer 
streamlines converge inside the layer I2 toward the corner at r = 1, z = b. The magnetic 
field lines in figure 7 show that a = -0.4 is a special case for figure 4 because the 
magnetic field line through the crystal corner at r = a, z = b also passes through the 
crucible corner at r = 1, z = 0. Therefore the interior layers I1 and I2 in figure 4 are 
merged into a single interior layer with a core bounded by this interior layer, the free 
surface and the vertical crucible wall. Figure 9(c) shows the flow inside the merged 
interior layers from the crystal edge at r = a, z = b toward the crucible corner at 
r = 1, z = 0. The melt flows vertically upward across the core from the interior layer to 
the Hartmann layer at the free surface. For a = -0.4, the streamlines penetrate further 
toward the bottom as (7b) would predict with a weaker field near the bottom. The 
maximum values of t,h are 0.1065,0.0426 and 0.0275 for the circulations in figures 9(a) ,  
9(b) and 9(c), respectively. Equation (6) predicts that these values should vary as 
[B,(r,b)]-2,  but the actual results for Ha = 100 vary more like [B,(r,b)]-'. Since 
Bz(r, b) = 0.396 and 1.387 for a = 1.4 and -0.4, rescaling of the uniform-field circula- 
tion with [B,(r, b)]-' gives 0.1075 and 0.0307 for a = 1.4 and -0.4, respectively. For 
Ha = 400, the circulations of these three cases scale approximately as [B,(r, b)]-3'2. 
We are approaching the asymptotic solution in $3, but we have not reached it for 
Ha = 400. 

As Ha is increased from 100 to 400, the maximum values of t,h decrease from 0.1065 
to 0.078 for a = 1.4 and from 0.0426 to 0.0202 for a uniform axial field. While the 
circulation does not increase as it does for a = 1.1, it does not decrease as rapidly as 
Ha-' either. For a uniform B,(r, b), (6) indicates that the circulation is proportional to 
the value of aT/ar at the point where the free-surface Hartmann layer H intersects the 
interior layer I1 in figure 3, i.e. at r = u+O(HU-~/'). Figure 2 indicates that aT/ar 
increases rapidly as r approaches a. As Ha is increased, the circulation decreases 
because it is confined to the Hartmann layer with O(Ha-l) thickness, but it is also 
driven by a larger maximum value of aT/ar at a point closer to r = a. The circulation 
will not decrease as Ha-' until Ha-'/' is so small that the interior layer I1 has negligible 
thickness, as assumed in the asymptotic solution in $3.  

6. Conclusions 
One of the disadvantages of a uniform axial magnetic field is its strong suppression 

of the thermocapillary convection which carries the melt to the free surface so that the 
oxygen can evaporate. A cusp magnetic field with only a radial component at the free 
surface should produce less suppression of the desirable convection. The asymptotic 
solutions in $03 and 4 for non-zero and zero axial magnetic fields at the free surface 
indicate that the thermocapillary convections should vary as B i z  and B;', respectively, 
where B, is the root-mean-squared magnetic flux density in the melt. A uniform axial 
magnetic field is a special case of the non-uniform fields treated in $3. The ratio of the 
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circulation for a cusp field to that for a uniform axial magnetic field is 4.56 or 11.02 
for Ha = 100 or 400, where Ha is the Hartmann number based on B,. The results in 
Q 5 show that the large-Hartmann-number asymptotic solution for the cusp field is 
realized for Ha 2 200, but that for the uniform axial field still deviates from the actual 
flow for Ha = 400. The asymptotic solutions in 953 and 4 indicate that perfect 
alignment between the local magnetic field and the plane of the free surface is required 
in order to achieve the benefits of a cusp field. However, the results in 95 indicate that 
the circulation for a slight misalignment with the dimensionless B, = 0.133 at the free 
surface is only moderately less than that for perfect alignment for the entire range of 
magnetic flux densities used for Czochralski crystal growth. 

The analyses in 993 and 4 assume that Bz(r, b) is O(1) and zero, respectively. The 
essential characteristics of the top layer in 94 are the same for any B,(r,b) which 
is O(Ha-'12). For Ha-'/' < B,(r,b) < 1, the top layer has a thickness which is 
O([Ha3z(r,b)]-1) and is essentially a Hartmann layer, so that the analysis of 93 
applies.One could bridge the gap between the two asymptotic solutions in $43 and 4 by 
setting Bz(r, b) = PHa-"', where p is an O( 1) parameter. The solutions in 993 and 4 
would represent the limits of this more general asymptotic solution as p- og and as 
p+O, respectively. From the results for Ha = 400 in 95, we see that as /3 is increased 
from 0 (a = 1.0) to 2.7 (a = 1.1) or to 7.9 (a = 1.4), the magnitude of the melt 
circulation is reduced by 11 % or by 65 %, respectively. We conclude that misalignments 
between the local magnetic field and free surface produce only small flow reductions 
as long as the dimensionless magnetic field component which is perpendicular to the 
free surface is less than roughly 3Ha-'I2. 

This research was supported by the US National Science Foundation under Grant 
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